pytorch交叉熵损失函数的weight参数的使用

首先

必须将权重也转为Tensor的cuda格式;

然后

将该class_weight作为交叉熵函数对应参数的输入值。

class_weight = torch.FloatTensor([0.13859937, 0.5821059, 0.63871904, 2.30220396, 7.1588294, 0]).cuda()

补充:关于pytorch的CrossEntropyLoss的weight参数

首先这个weight参数比想象中的要考虑的多

你可以试试下面代码

import torch
import torch.nn as nn
inputs = torch.FloatTensor([0,1,0,0,0,1])
outputs = torch.LongTensor([0,1])
inputs = inputs.view((1,3,2))
outputs = outputs.view((1,2))
weight_CE = torch.FloatTensor([1,1,1])
ce = nn.CrossEntropyLoss(ignore_index=255,weight=weight_CE)
loss = ce(inputs,outputs)
print(loss)
tensor(1.4803)

这里的手动计算是:

loss1 = 0 + ln(e0 + e0 + e0) = 1.098

loss2 = 0 + ln(e1 + e0 + e1) = 1.86

求平均 = (loss1 *1 + loss2 *1)/ 2 = 1.4803

加权呢?

import torch
import torch.nn as nn
inputs = torch.FloatTensor([0,1,0,0,0,1])
outputs = torch.LongTensor([0,1])
inputs = inputs.view((1,3,2))
outputs = outputs.view((1,2))
weight_CE = torch.FloatTensor([1,2,3])
ce = nn.CrossEntropyLoss(ignore_index=255,weight=weight_CE)
loss = ce(inputs,outputs)
print(loss)
tensor(1.6075)

手算发现,并不是单纯的那权重相乘:

loss1 = 0 + ln(e0 + e0 + e0) = 1.098

loss2 = 0 + ln(e1 + e0 + e1) = 1.86

求平均 = (loss1 * 1 + loss2 * 2)/ 2 = 2.4113

而是

loss1 = 0 + ln(e0 + e0 + e0) = 1.098

loss2 = 0 + ln(e1 + e0 + e1) = 1.86

求平均 = (loss1 *1 + loss2 *2) / 3 = 1.6075

发现了么,加权后,除以的是权重的和,不是数目的和。

我们再验证一遍:

import torch
import torch.nn as nn
inputs = torch.FloatTensor([0,1,2,0,0,0,0,0,0,1,0,0.5])
outputs = torch.LongTensor([0,1,2,2])
inputs = inputs.view((1,3,4))
outputs = outputs.view((1,4))
weight_CE = torch.FloatTensor([1,2,3])
ce = nn.CrossEntropyLoss(weight=weight_CE)
# ce = nn.CrossEntropyLoss(ignore_index=255)
loss = ce(inputs,outputs)
print(loss)
tensor(1.5472)

手算:

loss1 = 0 + ln(e0 + e0 + e0) = 1.098

loss2 = 0 + ln(e1 + e0 + e1) = 1.86

loss3 = 0 + ln(e2 + e0 + e0) = 2.2395

loss4 = -0.5 + ln(e0.5 + e0 + e0) = 0.7943

求平均 = (loss1 * 1 + loss2 * 2+loss3 * 3+loss4 * 3) / 9 = 1.5472

可能有人对loss的CE计算过程有疑问,我这里细致写写交叉熵的计算过程,就拿最后一个例子的loss4的计算说明

pytorch交叉熵损失函数的weight参数的使用

以上为个人经验,希望能给大家一个参考,也希望大家多多支持恩蓝小号。

原创文章,作者:RWXMU,如若转载,请注明出处:http://www.wangzhanshi.com/n/18451.html

(0)
RWXMU的头像RWXMU
上一篇 2025年1月4日 19:37:24
下一篇 2025年1月20日 14:04:03

相关推荐

发表回复

登录后才能评论